skip to main content


Search for: All records

Creators/Authors contains: "Jones, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study investigates Gulf Stream (GS) sea surface temperature (SST) anomalies associated with the extratropical transition (ET) of tropical cyclones (TCs) in the North Atlantic. Composites of western North Atlantic TCs indicate that GS SSTs are warmer, and both large‐ and fine‐scale SST gradients are weaker than average, for TCs that begin the ET process but do not complete it, compared with TCs that do. Further analysis suggests that the associated fine‐scale GS SST gradient anomalies are related to atmospheric processes but not the same as those that are typically associated with the onset of ET. As sensible heat flux gradients and surface diabatic frontogenesis are shown to generally scale with the local SST gradient strength, these results suggest that knowledge of the fine‐scale GS SST gradient in the weeks prior to the arrival of a TC might potentially provide additional information regarding the likelihood of that system completing ET.

     
    more » « less
  2. Abstract This study compares the spread in climatological tropical cyclone (TC) precipitation across eight different reanalysis datasets: NCEP-CFSR, ERA-20C, ERA-40, ERA5, ERA-Interim, JRA-55, MERRA-2, and NOAA-20C. TC precipitation is assigned using manual tracking via a fixed 500-km radius from each TC center. The reanalyses capture similar general spatial patterns of TC precipitation and TC precipitation fraction, defined as the fraction of annual precipitation assigned to TCs, and the spread in TC precipitation is larger than the spread in total precipitation across reanalyses. The spread in TC precipitation relative to the inter-reanalysis mean TC precipitation, or relative spread, is larger in the east Pacific than in the west Pacific. Partitioned by reanalysis intensity, the largest relative spread across reanalyses in TC precipitation is from high-intensity TCs. In comparison with satellite observations, reanalyses show lower climatological mean annual TC precipitation over most areas. A comparison of area-averaged precipitation rate in TCs composited over reanalysis intensity shows the spread across reanalyses is larger for higher intensity TCs. Testing the sensitivity of TC precipitation assignment to tracking method shows that climatological mean annual TC precipitation is systematically larger when assigned via manual tracking versus objective tracking. However, this tendency is minimized when TC precipitation is normalized by TC density. Overall, TC precipitation in reanalyses is affected by not only horizontal output resolution or any TC preprocessing, but also data assimilation and parameterization schemes. The results indicate that improvements in the representation of TCs and their precipitation in reanalyses are needed to improve overall precipitation. 
    more » « less
  3. Abstract

    This decade has witnessed the tremendous progress in miniaturizing optical imaging systems. Despite the advancements in 3D printing optical lenses at increasingly smaller dimensions, challenges remain in precisely manufacturing the dimensionally compatible optomechanical components and assembling them into a functional imaging system. To tackle this issue, the use of 3D printing to enable digitalized optomechanical component manufacturing, part‐count‐reduction design, and the inclusion of passive alignment features is reported here, all for the ease of system assembly. The key optomechanical components of a penny‐sized accommodating optical microscope are 3D printed in 50 min at a significantly reduced unit cost near $4. By actuating a built‐in voice‐coil motor, its accommodating capability is validated to focus on specimens located at different distances, and a focus‐stacking function is further utilized to greatly extend depth of field. The microscope can be readily customized and rapidly manufactured to respond to task‐specific needs in form factor and optical characteristics.

     
    more » « less
  4. Abstract

    Reactive interface patterning promoted by lithographic electrochemistry serves as a facile method for generating submicron structures on conductive substrates. A binary‐potential step applied to a metal layer with a resist overlayer allows silicon to be patterned with metal oxides. In this study, the role and influence of the resist overlayer on the uniformity of pattern formation are examined. The ability of the resist to detach from the underlying metal is a critical determinant of pattern geometry. By choosing an appropriate resist, large patterns with submicron precision are generated quickly by the application of the binary‐potential steps. From this information, a lithography‐free approach to generating identical patterns is achieved with simple resists such as that furnished from a lacquer–water emulsion, thus greatly simplifying the patterning of silicon with metal oxide catalysts.

     
    more » « less